Supplemental Data

Structure, Dynamics, and Ionization Equilibria of the Tyrosine Residues in Bacillus circulans Xylanase

Simon J. Baturin, Mark Okon, and Lawrence P. McIntosh*

Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Canada

*Corresponding author:
Lawrence P. McIntosh
Department of Biochemistry and Molecular Biology
Life Sciences Centre, 2350 Health Sciences Mall
University of British Columbia
Vancouver, B.C.
Canada, V6T 1Z3
Phone: (001) 604-822-3341
Fax: (001) 604-822-5227
E-mail: mcintosh@chem.ubc.ca
<table>
<thead>
<tr>
<th>Tyrosine</th>
<th>$^{13}\text{C}\beta$</th>
<th>$^{1}\text{H} / ^{13}\text{C}\delta$</th>
<th>$^{1}\text{H} / ^{13}\text{C}\varepsilon$</th>
<th>$^{13}\text{C}\zeta$</th>
<th>$^{1}\text{H}\eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y5</td>
<td>42.20</td>
<td>6.72 / 132.94</td>
<td>6.23 / 118.12</td>
<td>156.92</td>
<td></td>
</tr>
<tr>
<td>Y26</td>
<td>43.00</td>
<td>6.99 / 134.00</td>
<td>6.74 / 119.01</td>
<td>158.89</td>
<td>7.80</td>
</tr>
<tr>
<td>Y53</td>
<td>41.25</td>
<td>6.64 / 132.77</td>
<td>6.55 / 118.07</td>
<td>158.76</td>
<td>11.50</td>
</tr>
<tr>
<td>Y65</td>
<td>42.73</td>
<td>7.32 / 131.26</td>
<td>6.96 / 119.31</td>
<td>158.08</td>
<td></td>
</tr>
<tr>
<td>Y69</td>
<td>43.40</td>
<td>6.09 / 131.80</td>
<td>6.57 / 118.00</td>
<td>158.06</td>
<td></td>
</tr>
<tr>
<td>Y79</td>
<td>42.41</td>
<td>6.18 / 133.60</td>
<td>6.00 / 115.83</td>
<td>156.80</td>
<td>9.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.70 / 132.61</td>
<td>5.79 / 118.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y88</td>
<td>40.99</td>
<td>7.12 / 133.35</td>
<td>6.62 / 118.22</td>
<td>157.33</td>
<td></td>
</tr>
<tr>
<td>Y94</td>
<td>39.26</td>
<td>6.85 / 132.56</td>
<td>6.76 / 119.01</td>
<td>157.35</td>
<td></td>
</tr>
<tr>
<td>Y105</td>
<td>39.70</td>
<td>7.32 / 133.0</td>
<td>7.63 / 120.10</td>
<td>158.45</td>
<td>12.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.94 / 133.02</td>
<td>7.27 / 119.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y108</td>
<td>43.80</td>
<td>6.58 / 133.53</td>
<td>6.69 / 118.41</td>
<td>158.01</td>
<td></td>
</tr>
<tr>
<td>Y113</td>
<td>40.95</td>
<td>7.05 / 133.85</td>
<td>6.70 / 117.83</td>
<td>157.20</td>
<td></td>
</tr>
<tr>
<td>Y128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y166</td>
<td>38.51</td>
<td>6.73 / 132.97</td>
<td>6.53 / 117.88</td>
<td>158.71</td>
<td></td>
</tr>
<tr>
<td>Y174</td>
<td>40.27</td>
<td>6.84 / 132.27</td>
<td>6.75 / 118.45</td>
<td>157.49</td>
<td></td>
</tr>
</tbody>
</table>

a BcX in 10 mM sodium phosphate, pH 6.5, at 25 °C. Chemical shifts referenced directly to external DSS.

b Top (bottom) rows are for δ_1/ε_1 (and δ_2/ε_2).

c Could not be assigned reliably.
Fig. S1. Pulse sequence for a 1D 13C/15N-filtered experiment to detect signals from 1H nuclei bonded directly to oxygen (or sulfur) atoms while suppressing those bonded directly to amide 15N or aromatic 13C nuclei (see Figures 1 and 4). Frequencies: 1H, 4.8 ppm (water); 13C, 126 ppm (aromatic region); 15N, 118 ppm (amide region). Delays: $\tau_a = 5.3$ ms and $\tau_b = 3.1$ ms. Hard 90° (180°) pulses are depicted by tall narrow (wide) rectangles, and the 1.8 ms selective 1H 180° WATERGATE pulses as short rectangles. The triangles indicate 200 μs trapezoidal shape gradients at 46.9 G/cm (g_1). Although not required, 13C (2.36 kHz, WURST-40) and 15N (0.94 kHz, WALTZ-16) decoupling during acquisition improves filtering.

The phase cycling is:

$\phi_1 = 4(x, -x), 4(y, -y), 4(-x, x), 4(-y, y)$

$\phi_2 = 2(x), 2(y), 2(-x), 2(-y), 2(y), 2(-x), 2(-y), 2(x), 2(y), 2(-y), 2(x)$

$\phi_3 = 2(-x), 2(-y), 2(x), 2(y), 2(-x), 2(y)$

receiver = 2(x, -x, -x, x), 2(y, -y, -y, y), 2(-x, x, x, -x), 2(-y, y, y, -y)
Fig. S2. Pulse sequence for a long-range 2D 13C-HSQC experiment to detect tyrosine $^{1}H^{\alpha} - ^{13}C^{\varepsilon}$ (and weaker $^{1}H^{\alpha} - ^{13}C^{\zeta}$) correlations and suppress direct $^{1}H - ^{13}C$ correlations (see Figures 1, 2 and 7). Frequencies: ^{1}H, 4.8 ppm (water); ^{13}C, 126 ppm (aromatic region). Spectral widths: ^{1}H, 15000 Hz; ^{13}C, 9654 Hz (96 complex t_1 increments) with a 600 MHz spectrometer. Delay $\tau_a = 9.4$ ms (or integer multiples of $1/(2*160$ Hz)). Hard 90° (180°) pulses are depicted by narrow (wide) rectangles. The triangles indicate trapezoidal shape z-gradients: $g_1 = 500$ µs, 1.8 G/cm; $g_2 = 300$ µs, -18.8 G/cm; $g_3 = 1.5$ ms, 28.0 G/cm; $g_4 = 600$ µs, -55.6 G/cm; and $g_5 = 200$ µs, 26.2 G/cm. Decoupling during acquisition (84 ms) is achieved with a 2.36 kHz WURST-40 field.

Pulses are applied along the x-axis except where indicated. The phase cycling is:

$\phi_1 = x, -x$ (plus States-TPPI incrementation for quadrature detection in t_1)
$\phi_2 = 2(x), 2(-x)$
$\phi_3 = 4(x), 4(-x)$
receiver = x, -x, -x, x
Fig. S3. Pulse sequence for a 2D 13C(13C-TOCSY)Ha experiment to detect 13Ca-aromatic ring 1H correlations (adapted from (Löhr et al. 2005) and (Löhr et al. 2007)). Frequencies: 1H, 4.8 ppm (water); 13C, initially 35.5 ppm (13Ca) then switched to 132.2 ppm (aromatic region). Spectral widths: 1H, 6993 Hz; 13C, 4223 Hz (35 complex t_1 increments) with a 600 MHz spectrometer. Delays: constant time $T_c = 8.5$ ms, $\tau = 3.4$ ms, $\delta = 10.4$ ms, and $\zeta = 14$ ms. Hard 90° (180°) pulses are depicted by narrow (wide) rectangles, and selective pulses as triangles or long filled bars. The tall filled bars are 500 µs 180° broadband WURST-10 pulses. The pulse labelled α is a 2.5 ms selective 180° I-BURP-2 at 58 ppm (13Ca region). The 2.7 ms 180° RE-BURP pulse in the middle of the ζ period is applied at 129 ppm. The two 180° phase modulated pulses on 13Ca in the ζ period have the shape of the centre lobe of a sinc-function and a duration of 150 µs. The 13C-TOCSY consists of one cycle of a 3.3 kHz DIPS1-2. The 13C-1H polarization transfer (CP) consists of one cycle of a 5.4 kHz DIPS1-2. The trapezoidal shape z-gradients have a duration of 500 µs and strengths: $g_1 = 7.5$ G/cm; $g_2 = 5.6$ G/cm; $g_3 = 14.0$ G/cm; $g_4 = 9.4$ G/cm; and $g_5 = 6.1$ G/cm. Decoupling during acquisition (88 ms) is achieved with a 2.36 kHz WURST-40 field.

Pulses are applied along x-axis except where indicated. The phase cycling is:

$\phi_1 = 4(x), 4(-x)$

$\phi_2 = 2(x), 2(-x)$ (plus States-TPPI incrementation for quadrature detection in t_1)

$\phi_3 = x, y$

$\phi_4 = 8(x), 8(-x)$

$\phi_5 = 16(x), 16(-x)$

ϕ_{adj} was adjusted to 84° for optimal signal

receiver = ($x, -x, -x, x), 2(-x,x,x,-x), (x, -x, -x, x)$
Fig. S4. Pulse sequence for the simultaneous measurement of tyrosine longitudinal 13C decay and conformational exchange rates (constant time version, adapted from (Farrow et al. 1994); see Figure 5). Frequencies: 1H, 4.8 ppm (water); 13C, 125 ppm (aromatic region). Spectral widths: 1H, 10000 Hz; 13C, 4080 Hz (64 complex t_1 increments) with a 600 MHz spectrometer. Delays: constant time $T_c = 15.8$ ms, $\tau = 2.5$ ms, and $\delta = 5$ ms. Mixing period delays T are multiples of N to give 10, 50, 100, 200, 300, 400, 600, 800 and 1000 ms. Hard 90° (180°) pulses are depicted by narrow (wide) rectangles. The triangles indicate trapezoidal shape z-gradients: $g_1 = 1$ ms, 9.4 G/cm; $g_2 = 0.5$ ms, 7.5 G/cm; $g_3 = 1$ ms, 28.1 G/cm; $g_4 = 1$ ms, -37.5 G/cm; $g_5 = 0.5$ ms, -43.1 G/cm; $g_6 = 0.5$ ms, 15.0 G/cm; $g_7 = 0.2$ ms, -46.8 G/cm. Decoupling during acquisition (64 ms) is achieved with a 1.74 kHz GARP-1 field.

Pulses are applied along x-axis except where indicated. The phase cycling is:

$\phi_1 = x$ (plus States-TPPI incrementation for quadrature detection in t_1)

$\phi_2 = x, y, -x, -y$

receiver = $x, -x$
Fig. S5. The pulse sequence for a two-dimensional 13C(13C')1H$^\epsilon$ experiment to correlate tyrosine 1H$^\epsilon$ and 13C$^\zeta$ signals (see Figure 6C). The magnetization transfer follows an "out-and-back" pathway: 1H$^\epsilon$ \rightarrow 13C$^\epsilon$ \rightarrow 13C$^\zeta$(t$_1$) \rightarrow 13C$^\zeta$ \rightarrow 1H$^\epsilon$(t$_2$). Frequencies: 1H, 4.8 ppm (water); 13C, 118 ppm (13C$^\epsilon$) and switched to 157.7 ppm (13C$^\zeta$) during the t$_1$ period. Spectral widths: 1H, 8403 Hz; 13C, 754 Hz (40 complex t$_1$ increments) with a 600 MHz spectrometer. Delays: τ_a = 1.4 ms, τ_b = 1.35 ms, and τ_c = 3.45 ms (and the last delay includes half the duration of the 180° selective 2.9 ms RE-BURP pulse). Hard 90° (180°) pulses are depicted by narrow (wide) rectangles, and shaped pulses are triangles. The first two and last three carbon hard pulses are applied with full power ($B_1 = 15.8$ kHz), whereas the remaining carbon hard 90° pulses are selective ($B_1 = 1.546$ kHz). The first and last carbon shaped 180° pulses are selective 2.9 ms RE-BURP with maximum excitations at 118 ppm (13C$^\epsilon$) and 157.7 ppm (13C$^\zeta$). The 180° 144 µs rectangular pulse in the middle of the t$_1$ period has a maximum excitation at 118 ppm (13C$^\zeta$). Shaped pulses were constructed with the Varian Pbox utility. The triangles indicate trapezoidal shaped z-gradients: g_1 = 500 µs, 8.1 G/cm; g_2 = 500 µs, 6.1 G/cm; g_3 = 3 ms, 15.2 G/cm; g_4 = 200 µs, 7.6 G/cm; g_5 = 750 µs, 5.6 G/cm; g_6 = 500 µs, 10.1 G/cm; g_7 = 200 µs, 6.6 G/cm; g_8 = 500 µs, 16.2 G/cm; g_9 = 500 µs, 60.8 G/cm. Decoupling during acquisition (86 ms) is achieved with a 2.36 kHz WALTZ-16 field.

Pulses are applied along x-axis except where indicated. The phase cycling is:

- $\phi_1 = 8(x)$, 8(-x)
- $\phi_2 = 2(x)$, 2(-x)
- $\phi_3 = x$, -x (plus States-TPPI incrementation for quadrature detection in t$_1$)
- $\phi_4 = 4(x)$, 4(-x)
- $\phi_5 = 16(x)$, 16(-x)

receiver = x, 2(-x), x, -x, 2(x), 2(-x), 2(x), -x, x, 2(-x), x.
Fig. S6. The pulse sequence for a three-dimensional 13C 13C 1H e experiment to correlate tyrosine 1H e, 13C r and 13C z signals (see Figure 6D). The magnetization transfer pathway is 1H e \rightarrow 13C $^r(t_2)$ \rightarrow 13C $^z(t_1)$ \rightarrow 13C r \rightarrow 1H $^e(t_3)$. Due to the non-selective character of the 180° 13C pulse applied inside the $2^*\tau_g$ delay for constant time t_2 evolution, only half of the magnetization originating from 1H e is returned. All parameters are the same as for the two-dimensional 13C z(13C r) 1H e (Figure S5) with the following exceptions: additional delays $\tau_f = 2^*\tau_b$ and $\tau_g = 19$ ms; 13C r spectral width 903 Hz, 25 complex t_1 increments, and 17 complex t_2 increments; 1H decoupling (8.3 kHz) and 13C decoupling (2.2 kHz) are accomplished with WALTZ-16 modulation.

Quadrature detection in t_1 and t_2 is obtained by States-TPPI incrementation of ϕ_3 and ϕ_2, respectively.
Fig. S7. The pulse sequence for a two-dimensional \(^{13}\text{C}^{\varepsilon - \delta}\)^{1}H^{\varepsilon - \delta} experiment to correlate tyrosine \(^1\text{H}^{\varepsilon - \delta}\) and \(^{13}\text{C}^{\varepsilon}\) signals (see Figure 6A). The magnetization transfer pathway is:

\[
\begin{align*}
\text{\(^1\text{H}^{\varepsilon}\)} (t_2) & \\
\text{\(^1\text{H}^{\varepsilon}\)} & \quad \rightarrow \quad \text{\(^{13}\text{C}^{\varepsilon}\)} \quad \rightarrow \quad \text{\(^{13}\text{C}^{\varepsilon}\)} (t_1) \quad \rightarrow \quad \text{\(^{13}\text{C}^{\delta}\)} \quad \rightarrow \quad \text{\(^1\text{H}^{\delta}\)} (t_2)
\end{align*}
\]

All parameters are the same as for the two-dimensional \(^{13}\text{C}^{\varepsilon - \varepsilon}\)^{1}H^{\varepsilon - \varepsilon} (Figure S5) with the following exceptions: delays \(2*\tau_d = 5.6\) msec and \(2*\tau_e = 4\) ms (the last delay includes the duration of the \(180^\circ\) \(^{13}\text{C}\) selective \(490\) \(\mu\)s R-SNOB pulse); \(^1\text{H}^{\varepsilon - \delta}\) spectral width: \(8403.4\) Hz; \(^{13}\text{C}\) carrier set to \(118\) ppm \((^{13}\text{C}^{\varepsilon})\), switched to \(157.7\) ppm \((^{13}\text{C}^{\varepsilon})\) immediately before and after the \(t_1\) evolution period (50 complex \(t_1\) increments), and then switched to \(126\) ppm (midway between \(^{13}\text{C}^{\varepsilon}\) and \(^{13}\text{C}^{\delta}\)) for the remaining \(^{13}\text{C}\) pulses. The ratio of detected \(^1\text{H}^{\varepsilon}\) and \(^1\text{H}^{\delta}\) intensities depends on \(\tau_d\). The duration and strength of the \(g_{10}\) gradient are \(500\) \(\mu\)s, \(4\) G/cm.

Quadrature detection in \(t_1\) is obtained by States-TPPI incrementation of \(\phi_3\).
Fig. S8. The pulse sequence for a three-dimensional 13C13C13Cδ experiment to correlate tyrosine 1Hδ, 13Cϵ and 13Cζ signals (see Figure 6B). The magnetization transfer pathway is:

1H$^\prime$ (t$_3$)

1H$^\prime$ \rightarrow 13Cϵ (t$_2$) \rightarrow 13Cζ (t$_1$) \rightarrow 13Cϵ \rightarrow 13Cδ \rightarrow 1H$^\delta$ (t$_3$)

All parameters are the same as for the two-dimensional 13Cζ(13Cϵ)1Hδ (Figure S7) with the following exceptions: additional delays $\tau_f = 2\tau_b$ and $\tau_g = 19$ ms; 13Cϵ spectral width of 905 Hz (25 complex t$_1$ increments, and 17 complex t$_2$ increments) using a 600 MHz spectrometer.

Quadrature detection in t$_1$ and t$_2$ is obtained by States-TPPI incrementation of ϕ_3 and ϕ_2, respectively.
Fig. S9. The 13C and 1H chemical shifts (ppm) of free tyrosine at pH 3.6 and 12.5, measured from 13C-HMBC spectra (10 mM sodium phosphate, 5% D$_2$O, 25 °C). These values agree with those reported for glycyl-L-tyrosine amide and glycyl-L-tyrosineglycine (Norton and Bradbury 1974), as well as tyrosine residues in a linear tetrapeptide Gly-Gly-Tyr-Ala (Richarz and Wüthrich 1978; Bundi and Wüthrich 1979). However, one exception is that a larger pH-dependent 13Cγ chemical shift change ($|\Delta \delta|$ = 6.2 ppm or 6.8 ppm) is observed in the latter species, respectively, compared to the free amino acid.
Fig. S10. The pH dependent $^1\text{H}^\delta$ (left) and $^1\text{H}^\varepsilon$ (right) chemical shifts of the BcX tyrosines (35 °C), measured from $^1\text{H}^\varepsilon/^1\text{H}^\delta$ ($^{13}\text{C}^\varepsilon$)$^{13}\text{C}^\zeta$ spectra. The lines represent the best-fits to a single titration event. In contrast to $^{13}\text{C}^\zeta$ (Figure 7), the $^1\text{H}^\delta$ and $^1\text{H}^\varepsilon$ nuclei show significantly more dispersion due to their structural environment than any changes due to the effects of pH, and thus their chemical shifts are not diagnostic of the tyrosine ionization states. Fitting the data for residues showing clear, albeit small, pH-dependent changes ($|\delta_b - \delta_a| > 0.1$ ppm) yielded the following apparent pK_a values:

<table>
<thead>
<tr>
<th>Tyrosine</th>
<th>pK_a (from $^1\text{H}^\delta$)</th>
<th>$^1\text{H}^\delta$ δ (ppm)</th>
<th>pK_a (from $^1\text{H}^\varepsilon$)</th>
<th>$^1\text{H}^\varepsilon$ δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y69</td>
<td>6.8 ± 0.1</td>
<td>-0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y88</td>
<td>8.9 ± 0.2</td>
<td>-0.10</td>
<td>10.2 ± 0.1</td>
<td>-0.18</td>
</tr>
<tr>
<td>Y94</td>
<td></td>
<td></td>
<td>10.7 ± 0.3</td>
<td>-0.12</td>
</tr>
<tr>
<td>Y113</td>
<td>10.2 ± 0.1</td>
<td>-0.21</td>
<td>10.3 ± 0.1</td>
<td>-0.28</td>
</tr>
<tr>
<td>Y174</td>
<td>10.4 ± 0.1</td>
<td>-0.13</td>
<td>10.5 ± 0.2</td>
<td>-0.23</td>
</tr>
</tbody>
</table>

Note that the fit pK_a values for Tyr113 and Tyr174 are similar for both the $^1\text{H}^\delta$ and $^1\text{H}^\varepsilon$, and also agree with those determined from their pH-dependent $^{13}\text{C}^\zeta$ shifts (Table 1). In contrast, whereas the $^1\text{H}^\varepsilon$ and $^{13}\text{C}^\zeta$ of Tyr88 yield comparable pK_a values, the $^1\text{H}^\delta$ appears to report the titration of other group(s) in BcX with a pK_a ~8.9; however, no obvious candidate can be identified from the crystal structure of the enzyme. The substantial change in the $^1\text{H}^\delta$ chemical shift of Tyr69 most likely reflects the ionization of the neighbouring catalytic general acid Glu172 (pK_a 6.7). (McIntosh et al. 1996; McIntosh et al. 2011)).
Supplemental References

