Circular Permutation of *Bacillus circulans* Xylanase: A Kinetic and Structural Study†

Stephan Reitinger,‡, Ying Yu,§ Jacqueline Wicki,‡, Martin Ludwiczek,‡, Igor D’Angelo,‡ Simon Baturin,‡, Mark Okon,‡, Natalie C. J. Strynadka,‡,§, Stefan Lutz,‡ Stephen G. Withers,*,‡, and Lawrence P. McIntosh*,

†Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1, ‡Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, §Centre for High Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1, ‡Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, ‡Michael Smith Laboratory, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4, and §Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3

Received January 11, 2010; Revised Manuscript Received February 16, 2010

ABSTRACT: The 20 kDa *Bacillus circulans* Bcx is a well-studied endoxylanase with a β-jellyroll fold that places its N- and C-termini in salt bridge contact. Initial experiments verified that Bcx could be circularly permuted by PCR methods to introduce new termini in loop regions while linking its native termini directly or via one or two glycines. Subsequently, a library of circular permutants, generated by random DNase cleavage of the circularized Bcx gene, was screened for xylanase activity on xylan in Congo Red-stained agar. Analysis of 35 unique circular active permutants revealed that, while many of the new termini were introduced in external loops as anticipated, a surprising number were also located within β-strands. Furthermore, several permutations placed key catalytic residues at or near the new termini with minimal deleterious effects on activity and, in one case, a 4-fold increase. The structure of one permutant was determined by X-ray crystallography, whereas three others were probed by NMR spectroscopy. These studies revealed that the overall conformation of Bcx changed very little in response to circular permutation, with effects largely being limited to increased local mobility near the new and the linked old termini and to a decrease in global stability against thermal denaturation. This library of circularly permuted xylanases provides an excellent set of new start points for directed evolution of this commercially important enzyme, as well as valuable constructs for interm-mediated replacement of key catalytic residues with unnatural analogues. Such approaches should permit new insights into the mechanism of enzymatic glycoside hydrolysis.

The endoxylanase Bcx from *Bacillus circulans* is a 20 kDa glycoside hydrolase that has served as an excellent model system for understanding enzyme mechanisms in general and glycosidase mechanisms in particular. The insights obtained not only are of academic interest but also have substantial commercial importance since xylanases are widely used in commercial food preparation, as well as in the kraft pulp and paper industry and potentially in biofuel generation. Consequently, Bcx and other closely related GH family 11 xylanases (1) have been subjected to numerous studies on the structural and functional level (2).

Bcx degrades xylan through a retaining, double-displacement mechanism involving a glycosyl-enzyme intermediate (3–6). Formation and hydrolysis of this covalent intermediate proceeds via oxocarbenium ion-like transition states, with the assistance of two key catalytic glutamic acids. One residue (Glu78) acts as a nucleophile, attacking the anomeric carbon of the substrate. The other (Glu172) functions as a general acid/base catalyst, assisting in the formation of the intermediate by proton donation, as well as in the subsequent hydrolysis step by deprotonating the attacking nucleophilic water. The active site residues of Bcx, as well as the dynamic and electrostatic properties of the glycosyl-enzyme intermediate, have been characterized extensively by X-ray crystallography and NMR spectroscopy (5, 7–12).

Studies of Bcx, along with parallel investigations on another xylanase of a different tertiary fold (the GH family 10 *Cellulomonas fimii* endoxylanase Cex) and continuing collaborative computational and heavy atom isotope effect studies, have provided particularly detailed insights into fundamental mechanisms of carbohydrate degradation (6, 13, 14). With this same set of mechanistic tools, analyses have been performed on interesting mutants derived from site-directed and random mutagenesis methods, thereby providing additional insights into structure/function relationships. However, further understanding could be
obtained if these enzymes were amenable to circular permutation, such that new start and finish positions for the protein sequences could be generated. Not only would this allow interrogation of the role of the dynamics of the “old” and “new” termini in enzyme structure and function but it would also facilitate the specific incorporation of unnatural or labeled amino acids into the protein by semisynthetic approaches, for example, using intein methodologies (15). Bcx is particularly well suited to circular permutation since its β-jellyroll structure places its native N- and C-termini next to each other, interacting directly via a salt bridge.

Systematic circular permutation of genes has emerged as a useful tool to conduct studies on polypeptide folding and stability (16–20). The overall tertiary structure of a protein is usually retained, since, with the exception of possible residues introduced to bridge the native termini, the amino acid sequence is not changed but simply rearranged. Nevertheless, circular permutation can significantly affect stability, dynamics, and function (21–27). According to the Circular Permutation Database (CPDB), more than 4000 naturally occurring or artificially generated circularly permuted proteins have been identified to date (28). In the first reported circular permutation experiment, the termini of bovine pancreatic trypsin inhibitor (BPTI) were linked chemically, and the circular polypeptide chain was subsequently cleaved by proteolysis at a specific reactive site (29). In recent years, recombinant DNA technologies have been used to generate circularly permuted variants of proteins such as phosphoribosylanthranilate isomerase (30), β-glucanases (31, 32), aspartate transcarbamoylase (33, 34), dual chain avidin (35), T4 lysozyme (25), and Candida antarctica lipase B (24, 27, 36). A sortase-catalyzed transpeptidation approach to synthesize circular proteins was also recently reported (37).

A particularly attractive approach, especially for the objectives of our mechanistic study, involves the generation of libraries of circular permutants via random cleavage of the circularized gene. Expression of the resultant permuted gene library in Escherichia coli, followed by activity-based screening, can lead to the identification of active permutated enzymes. Application of this approach to C. antarctica lipase B not only generated a large library of functional permutants but also identified some with substantially (up to 175-fold) increased activity (36). In this paper, we present the enzymatic, structural, and dynamic characterization of a set of active, circularly permuted Bcx variants generated by this random cleavage protocol. Most significantly, new termini could be introduced into the active site of the enzyme without dramatically altering its catalytic activity, thus establishing the framework for future mechanistic studies, as proposed above.

EXPERIMENTAL PROCEDURES

PCR Cloning of “Designed” Permutants. Initial clones encoding Bcx permutants with a single glycine linker joining the native ends (ΔAla and Trp185) and with new termini introduced at positions 102 (cpG102G1), 123 (cpA123G2), or 139 (cpG139G1) were generated by a four-primer PCR approach and placed in the pET16b vector (Novagen) using NotI and XhoI restriction sites.2 Subsequent clones with linkers of zero (cpA123G0) and two glycine residues (cpA123G2) were derived from the cpA123G1 template by PCR. Primer sequences are summarized in Supporting Information Table S1, and the amino acid sequences of all designed circular permutants are listed in Supporting Information Table S2.

Random Circular Permutation of Bcx. The random circular permutation of Bcx was performed as described previously for C. antarctica lipase B (24). Briefly, the gene encoding cpA123G2 (with a two-glycine linker, deletion of Arg122, and the Thr123Ala mutation) was permuted by PCR methodology to position the unique internal NsiI restriction site at both ends of the gene sequence, creating cpBcx_NsiI (Supporting Information Table S1). In preparation for the permutation experiment, cpBcx_NsiI was cloned into the high-copy DNA plasmid pSTBlue (Novagen, Madison, WI). Following plasmid amplification in E. coli DH5α, the purified vector was digested with NsiI, and the desired 560-bp DNA fragment was isolated via agarose gel electrophoresis. Next, the linear fragment was circularized by intramolecular ligation (2 μg/mL DNA) with 30 units/mL T4 DNA ligase (Promega, Madison, WI) in the manufacturer’s buffer overnight at 16°C. The reaction mixture was concentrated by ethanol precipitation, and the remaining linear DNA was eliminated by treatment with ExoIII (120 units/μg of DNA; Promega) for 30 min at 37°C. After heat inactivation of ExoIII (10 min at 72°C), the circular DNA was recovered via QIAquick purification (Qiagen, Valencia, CA).

The circularized DNA was linearized by limited DNase I digestion (0.0005 units/μg of DNA; Roche, Indianapolis, IN) in 50 mM Tris-HCl (pH 7.5) and 1 mM MnCl2 at room temperature for 15 min. The reaction was quenched by addition of 10 μL of EDTA (0.5 M), followed by treatment with T4 DNA polymerase (1 unit/μg of DNA; Promega), 150 μM dNTPs, and T4 DNA ligase (2 units/μg of DNA; Promega) in T4 ligase buffer at ambient temperature for 1 h to repair DNA nicks and to create blunt ends. The resulting cpBcx library was purified by agarose gel electrophoresis and cloned into pET27-PP, predigested with PsI and PacI. The pET27-PP vector is derived from pET-27b (Novagen) and carries unique PsI and PacI restriction sites (underlined), as well as three stop codons (bold) in all three reading frames in the multiple cloning site. The new cleavage sites were introduced by primer overlap extension, using forward primer 5′-CTG CTC TTC GCT GCC CAG CCG GCG ATG GCC TGC AGA TGG ATC TCG GAA TTA ATT ATC CGG-3′ and reverse primer 5′-GAT CTC GAG TTA GTT AGT TAA TTA AGC GCC CGC ACC AAC CTT TTC GAC-3′. In addition, the pET27-PP vector encodes a pelB leader sequence for protein secretion to the periplasmic space.

Library Screening Using a Congo Red Overlay Assay. The circularly permuted Bcx gene library was transformed into E. coli BL21(λDE3) and spread out on LB agar plates containing 30 μg/mL kanamycin. After 12 h incubation at 37°C, colonies were replica-plated onto fresh LB agar media with 30 μg/mL kanamycin. While the master plate was stored at 4°C, the replica plates were incubated for 3 h at 37°C prior to overlaying them with molten agar containing 0.4% agar, 0.4% birchwood xylan (Sigma, St. Louis, MO), 30 μg/mL kanamycin, and 1 mM IPTG. Once the overlay agar had solidified, plates were incubated for another 8 h at 37°C. To visualize xylanase activity, the agar plates were stained with 0.5% Congo Red solution for 15 min, followed by destaining with 1 M NaCl for 30 min (38). Colonies

2Nomenclature of the circular permutants: Termini of circular permutants were either joined directly (G0) or joined via the insertion of one (G1) or two (G2) glycine residues. All permutants and cpWT have the Arg122 deletion and the Thr123Ala mutation except cpG102G2 and cpG139G1. Permutants, recloned to remove additional or replace missing residues at the new termini, are indicated by a prime symbol (e.g., cpN35G2).
expressing functional glycoside hydrolases could be identified by formation of a clearing zone surrounding the host cells. The corresponding colonies on the master plate were picked and regrown for DNA sequence analysis. For initial characterization of the resulting Bex permutants, the pET27-PP constructs were used (Supporting Information Table S3). For subsequent detailed kinetic analysis, genes of selected permutants were subcloned into pET-21b via the NdeI and HindIII restriction sites. The PCR primers for this step were also designed to remove additional or replace missing residues at the new termini of the permutants (Supporting Information Table S4).

Protein Purification. Gene expression and protein purification were carried out as described (12, 39). *E. coli* BL21(IndE3) cells were grown at 30 °C in LB media containing 100 µg/mL carbenicillin (for pET16b and pET21b constructs) or 50 µg/mL kanamycin (for pET27-PP constructs), respectively, or in M9 medium with 1 g/L 15NH4Cl or 1 g/L 15NH4Cl and 3 g/L [13C6]glucose (Spectra Stable Isotope Inc.). Protein expression was induced with 50 µM IPTG at OD600 ~ 0.6, and cells harvested 20 h later. For preliminary screening, proteins were purified with only SP-Sepharose (HiTrap, 5 mL column; GE Healthcare) ion-exchange chromatography in 20 mM MES buffer, pH 6.0, and eluted with a 0–1 M NaCl gradient. Their concentrations were determined by absorbance spectroscopy with a Unicam UV/vis spectrometer UV4 using the predicted concentrations were determined by absorbance spectroscopy of 1 cm

Active Site Titrations Using 2F-DNPX2. Enzyme (final concentration of 5–20 µM) was added to a solution of 0.39 mM 2,4-dinitrophenyl 2-deoxy-2-fluoro-β-D-glucopyranoside (2F-DNPX2), 20 mM MES, pH 6.0, and 50 mM NaCl at 22 °C. The 2,4-dinitrophenolate released, due to covalent inactivation of the active enzyme (41), was monitored at 400 nm. The increase in the Ac000 observed was corrected for the absorbance due to spontaneous hydrolysis of 2F-DNPX2 and enzyme-catalyzed turnover. From the net ΔAc000, which corresponds to the concentration of 2,4-dinitrophenolate released (ΔAc000 = 11.40 mM−1 cm−1), where Δc is the difference in molar absorptivity between 2,4-dinitrophenol and its corresponding xylobioside at pH 6.0, the concentration of active enzyme was determined.

Steady-State Enzyme Kinetics. Two aryl β-D-xylobiosides were used as substrates in the assays described below: 2,5-dinitrophenyl β-D-xylobioside (DNPX2), Δε440nm = 3.57 mM−1 cm−1, pKₐ of 2,5-dinitrophenol = 5.22, and 2-nitrophenyl β-D-xylobioside (ONPX2), Δε400nm = 1.07 mM−1 cm−1, pKₐ of 2-nitrophenol = 7.22 (42). All substrates were synthesized and characterized according to previously published procedures (43, 44). Spectrophotometric assays were performed using either a Cary 4000 or Unicam UV4 spectrophotometer in 200 µL microblack-walled quartz cuvettes or 1000 µL disposable methacrylate cuvettes (42).

The second-order rate constants (k_{cat}/K_m) for the hydrolysis of ONPX2 and DNPX2 were determined from progress curves at low substrate concentrations using the substrate depletion method (6). Enzyme was added to reaction mixtures containing substrate concentrations less than (1/5)K_m, and the release of nitrophenolate was monitored until substrate depletion was observed. The change in absorbance with respect to time was fitted to a first-order rate equation using the program GraFit 5.0 (45).

Michaelis–Menten steady-state parameters for the hydrolysis of DNPX2 were determined at six different substrate concentrations ranging from 0.2 to 2 times the estimated K_m value. The relative insolubility of DNPX2 precluded study at higher substrate concentrations. From the experimental rate versus substrate concentration data, K_m and k_{cat} values were calculated directly using GraFit 5.0 (45).

Thermal Denaturation Measurements. Circular dichroism (CD) spectra were measured on a JASCO J-810 spectropolarimeter. A 1 mm path length cell containing protein at a concentration of 8 µM in 20 mM sodium phosphate buffer, pH 7.0, was used. The long-lived glycosyl-enzyme intermediate forms were generated by treatment with excess 2F-DNPX2 for at least 3 h. Thermal denaturation curves were recorded by monitoring the signal at 219 nm as a function of temperature, increasing at a rate of 1 °C/min. The midpoint unfolding temperature, T_m, was calculated by nonlinear least-squares data fitting to a standard equation describing a two-state conformational equilibrium (46).

X-ray Crystallography. Crystals of cpA123 were grown at 4 °C using the hanging drop method by equilibrating 2 mL of purified protein solution (25–30 mg/mL) against an equal volume of 13–20% saturated (NH₄)₂SO₄ in 40 mM Tris-HCl, pH 8.0. Prior to data collection, all crystals were transferred for a few seconds into cryoprotectant solutions composed of mother liquor supplemented with 5–25% glycerol and then frozen in liquid nitrogen. X-ray data collection was performed under cryogenic conditions (100 K) using an in-house rotating anode X-ray generator (Cu Kα radiation λ = 1.541 Å). Data were recorded using an image plate detector and processed using HKL2000 (47). The wild-type Bex coordinates 1HV1.pdb were used as a search model for molecular replacement with Phaser (48). The correct solution was then used for model rebuilding and structure refinement with CNS (simulated annealing) (49) and REFMAC (maximum likelihood functions) (50), alternating with manual adjustments using COOT (51). A random sample containing roughly 5% of the total number of reflections was excluded from the refinement and used for the calculation of the free R factor. Tight noncrystallographic symmetry restraints and geometry were maintained throughout all of the different steps of refinement and then partially relaxed at the final stage. Care was taken to avoid overfitting the structure by reducing the X-ray data weighting term during refinement. Water molecules were assigned at 3σ residual F_o − F_c electron density areas located within 3 Å from the protein and confirmed by visual inspection. All models displayed acceptable stereochemical geometries, with >95% of the residues in the most favorable regions of the Ramachandran plot. Supporting Information Table S5 provides a summary of this crystallographic analysis. The final coordinates of cpA123 were deposited in the RCSB Protein Data Bank under accession code 3LB9. Structural figures were made using PYMOL (52).

NMR Spectroscopy. NMR spectra were recorded at 25 °C with Varian Unity 500 MHz and cryoprobe-equipped Inova 600 MHz spectrometers. Data were processed with NMRpipe (53) and analyzed using Sparky (54). Samples of 13C/15N-labeled cpWT (0.94 mM), 13C/15N-labeled cpN35 (0.7 mM), and
RESULTS

Creation of Rational Design Permutants. As an initial feasibility study, three circular permutants (cpG102G1, cpA123G1, and cpG139G1) were generated by rational design. The 2.7 Å distance between the native N- and C-termini of Bcx was bridged with a single glycine residue, and new termini were introduced at the indicated positions (Supporting Information Table S2). The sites were selected due to their locations in exposed surface loops, minimizing the potential risk for disruption of the permutant’s secondary and ternary structure relative to the wild-type enzyme. Only minimal structural perturbations were observed at the site of the glycine linker, as well as the position of the peptide linker connecting the native termini can have a significant effect on enzyme activity and stability. To explore the impact of truncation or insertion of additional amino acids in the linker region on the properties of Bcx, we chose cpA123G2 as a template for generating two additional variants. In one case, we deleted the linker and directly joined the native termini (cpA123G0), and in the other, we extended the linker by a second glycine residue (cpA123G2). Thermal denaturation curves revealed that cpA123G2 had a slightly higher T_m value than cpA123G0 and cpA123G1, whereas the enzymatic activities of all three hydrolases measured with ONPX2 were essentially the same (Table 1). Based on its slightly higher stability, cpA123G2 was chosen as the template for the subsequent generation of random permutants.

Optimization of Linker Length. The length and composition of the peptide linker connecting the native termini can have a significant effect on enzyme activity and stability. To explore the impact of truncation or insertion of additional amino acids in the linker region on the properties of Bcx, we chose cpA123G2 as a template for generating two additional variants. In one case, we deleted the linker and directly joined the native termini (cpA123G0), and in the other, we extended the linker by a second glycine residue (cpA123G2). Thermal denaturation curves revealed that cpA123G2 had a slightly higher T_m value than cpA123G0 and cpA123G1, whereas the enzymatic activities of all three hydrolases measured with ONPX2 were essentially the same (Table 1). Based on its slightly higher stability, cpA123G2 was chosen as the template for the subsequent generation of random permutants.

Random Circular Permutation of Bcx. Extending our studies of circular permutated Bcx beyond the three designed variants, we applied a random circular permutation protocol for

Table 1: Characterization of Designed and Selected Random Circular Permutants of Bcx

<table>
<thead>
<tr>
<th>enzyme</th>
<th>k_{cat}/K_m (mM$^{-1}$ s$^{-1}$)</th>
<th>relative activity</th>
<th>T_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.35a</td>
<td></td>
<td>62.7 ± 0.2</td>
</tr>
<tr>
<td>cpG102G1</td>
<td>0.44a</td>
<td>1.3</td>
<td>50.0 ± 0.2</td>
</tr>
<tr>
<td>cpG139G1</td>
<td>0.43a</td>
<td>1.2</td>
<td>47.6 ± 0.2</td>
</tr>
<tr>
<td>cpA123G1a,b</td>
<td>0.10b</td>
<td></td>
<td>53.2 ± 0.2</td>
</tr>
<tr>
<td>cpA123G0a,b</td>
<td>0.06b</td>
<td>0.3</td>
<td>54.8 ± 0.2</td>
</tr>
<tr>
<td>cpA123G2a,b</td>
<td>0.08b</td>
<td></td>
<td>55.8 ± 0.2</td>
</tr>
<tr>
<td>WT</td>
<td>0.32d</td>
<td>1.4</td>
<td>56.0 ± 0.2</td>
</tr>
<tr>
<td>cpWTa</td>
<td>0.44d</td>
<td>4.5</td>
<td>50.4 ± 0.2</td>
</tr>
<tr>
<td>cpY94G2a,b</td>
<td>0.53d</td>
<td></td>
<td>52.3 ± 0.2</td>
</tr>
<tr>
<td>cpY174G2a,b</td>
<td>0.76d</td>
<td></td>
<td>45.9 ± 0.2</td>
</tr>
</tbody>
</table>

*Enzymes are ΔArg122 and T123A. *Average errors in kinetic parameters are ±5–10%. *Kinetic parameters for the hydrolysis of ONPX2 were determined at 25 °C in 100 mM sodium phosphate buffer (pH 6.0) containing 0.1% (w/v) BSA. *Kinetic parameters for the hydrolysis of ONPX2 were determined at 25 °C in 100 mM MES (pH 6.0) and 50 mM NaCl containing 0.1% (w/v) BSA.

15N-labeled cpY94G2 (0.04 mM) were in 10 mM sodium phosphate buffer, pH 6.5, with 5% D$_2$O lock solvent. The spectral assignments of main chain nuclei in cpWT and cpN35G2 were obtained from 15N-HSQC, HN(CA)CB, CBCACONH, HNCO, HN(CA)CO, and 15N-edited TOCSY- and NOESY-HSQC spectra (55), combined with knowledge of the previously reported assignments for the wild-type protein (9, 56).

Backbone amide 1H-15N T$_1$ and T$_2$ relaxation and heteronuclear 1H-15N NOE experiments were performed with 13C/15N-labeled cpWT and cpN35G2 at 25 °C on an Inova 600 MHz spectrometer (57). The T$_1$ and T$_2$ values were determined using a nonlinear, least-squares fitting of the intensity of the cross-peaks to an exponential decay in the Sparky software. NOE values were obtained by comparing the ratios of cross-peak intensities with and without proton saturation. Anisotropic tumbling and internal dynamics parameters calculated from the relaxation data were processed according to the model-free formalism of Lipari and Szabo (58), using TENSOR2 (39).
generating a comprehensive combinatorial library of all possible Bcx permutants. Briefly, we self-ligated the gene encoding for cpA123G2 to create circular DNA and then relinearized the sequence by limited digestion with DNase I. The resulting library of permutated genes was cloned into a modified pET expression vector, allowing for blunt-end ligation of the gene inserts next to a start codon and stop codons in all three reading frames. This cloning strategy introduced two mutations: an extra methionine residue at the N-terminus, which is accommodated by deleting Arg122, and a substitution of Thr123 to Ala due to the PolI restriction site. After transformation of the library into E. coli BL21 cells (2 × 10^5 cfu), DNA sequence analysis of 32 randomly selected members indicated a stochastic distribution of new termini across the entire length of the protein sequence (Figure 1, red lines).

Enzyme variants with glycoside hydrolase activity were identified by screening the library against xylan using a Congo Red overlay assay. The examination of 3000 cfu yielded 59 active candidates. Among them, DNA sequence analysis found 35 hydrolases with unique termini (Figure 1, green lines, and Supporting Information Table S3). The new N- and C-termini were found to occur not only in exposed loops but also within β-strands and even surprisingly near several active site residues (Figure 2).

Qualitative Analysis of Randomly Generated Bcx Permutants. A preliminary qualitative analysis of these 35 permutants was performed to assess expression levels, purifiable yields, and specific activity of individual variants for hydrolysis of DNPX2 (Table 2). As a reference, we used “cpWT”, one of the functional library members whose new termini coincide with the positions in wild-type Bcx. cpWT is derived from cpA123G2 and hence carries the Arg122 deletion and the T123A mutation. These changes lower its Tm value by 7°C relative to the wild-type enzyme, yet lead to slightly higher activity with the test substrates (Tables 1 and 3). To assess protein expression levels and solubility of all 35 Bcx permutants, culture samples of the E. coli expression host were analyzed for total and soluble target protein by ion-exchange chromatography and SDS–PAGE. Relative to cpWT, a majority of permutants showed lower amounts of soluble protein and a tendency for formation of inclusion bodies. The trend likely reflects reduced overall protein stability and possibly impaired folding kinetics. The relative activities of the single-step purified proteins, determined using a colorimetric substrate depletion assay, largely (though not in all cases) correlated with the purified yields and thus likely with stability. As summarized in Figure 2 and Table 2, several permutants exhibited wild-type-like activity, whereas activities of others were significantly impaired.

Detailed Stability and Activity Studies on Three Selected Permutants. Three permutants with new termini within or near the active site (cpN35G2, cpY94G2, and cpY174G2) were selected for detailed characterization. The genes encoding these permutants were corrected for missing or extra residues resulting from the random circular permutation protocol and subsequently recloned into the pET21 vector without an encoded pelB leader. The expressed and purified enzymes were quantified by an active site titration assay using the covalent inactivator 2F-DNPX2.

Initial measures of the effects of the permutations on the structure and stability of Bcx were obtained using CD spectroscopy. cpN35G2, cpY94G2, and cpY174G2 yielded CD spectra that were practically identical to those of both cpWT and wild-type Bcx (not shown). Thus, each variant folded properly, and circular permutation at the three sites had little impact on the overall structures of the enzymes. Nonetheless, the stability of these variants was impaired since thermal denaturation studies revealed a significant drop in Tm values from 56°C for cpWT to, in the worst case, 46°C for cpY174G2 (Table 1). The structure and catalytic viability of each permutant were probed by treatment with the mechanism-based inhibitor 2F-DNPX2 to trap them as their covalent glycosyl-enzyme intermediate. Indeed, in each case the Tm value was raised by approximately 10°C upon trapping of the intermediate, as also found for the wild type and cpWT, therefore indicating correct folding and enzymatic mechanism.

Kinetic parameters for hydrolysis of ONPX2 and DNPX2 by the selected permutants and wild-type Bcx are presented in Tables 1 and 3, respectively. Kinetic properties of wild-type Bcx were consistent with previous reports (6, 12, 42). Deletion
of Arg122 and substitution of Thr123 with an alanine residue in cpWT, somewhat surprisingly, resulted in a slight improvement in catalytic efficiency. However, based on numerous mutagenesis studies, the thumb regions of family 11 xylanases are tolerant to extensive mutations, including amino acid deletions (60). Even more interestingly, the circular mutants were also comparable or slightly better catalysts than wild-type Bcx, with activities enhanced by up to ~4-fold in the case of cpN35G2.

X-ray Crystallographic Structure of cpA123G1. The structure of the initially designed cpA123G1 variant was determined by X-ray crystallography in order to obtain insights into the consequences of permutation. The protein crystallized with three molecules in the asymmetric unit, with each monomer superimposing closely upon one other and upon the structure of the wild-type enzyme (Figure 3, center). Since the overall fold of Bcx is retained, we focus our comments on the localized conformational differences at the termini of the wild-type and mutated protein.

Table 3: Kinetic Parameters for the Hydrolysis of DNPX2 by Wild-Type Bcx and Selected Circular Permutants

<table>
<thead>
<tr>
<th>enzyme</th>
<th>sequence</th>
<th>relative activity</th>
<th>kcat/Km (s−1 mM−1)</th>
<th>kcat/Km (s−1 mM−1)</th>
<th>kcat (s−1)</th>
<th>Km (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpWT</td>
<td>A1/W185</td>
<td>++</td>
<td>1.6 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>3.4 ± 0.1</td>
<td>2.4 ± 0.1</td>
</tr>
<tr>
<td>cpA123G1</td>
<td>A1/V184-CN</td>
<td>+</td>
<td>1.1 ± 0.1</td>
<td>1.1 ± 0.1</td>
<td>2.4 ± 0.1</td>
<td>2.4 ± 0.1</td>
</tr>
<tr>
<td>cpS2G1</td>
<td>S2/A1-S</td>
<td>++</td>
<td>1.8 ± 0.2</td>
<td>1.8 ± 0.2</td>
<td>3.6 ± 0.1</td>
<td>3.6 ± 0.1</td>
</tr>
<tr>
<td>cpT3G1</td>
<td>T3/S2-TN</td>
<td>++</td>
<td>2.0 ± 0.3</td>
<td>2.0 ± 0.3</td>
<td>4.0 ± 0.3</td>
<td>4.0 ± 0.3</td>
</tr>
<tr>
<td>cpN163G2</td>
<td>T10/T1-N</td>
<td>++</td>
<td>2.2 ± 0.4</td>
<td>2.2 ± 0.4</td>
<td>4.4 ± 0.4</td>
<td>4.4 ± 0.4</td>
</tr>
<tr>
<td>cpG139G2</td>
<td>G13/T10-N</td>
<td>++</td>
<td>2.4 ± 0.5</td>
<td>2.4 ± 0.5</td>
<td>4.8 ± 0.5</td>
<td>4.8 ± 0.5</td>
</tr>
<tr>
<td>cpA180G2</td>
<td>A18/T10-N</td>
<td>+</td>
<td>2.5 ± 0.6</td>
<td>2.5 ± 0.6</td>
<td>5.0 ± 0.6</td>
<td>5.0 ± 0.6</td>
</tr>
<tr>
<td>cpG21G2</td>
<td>G21/N17-VTN</td>
<td>++</td>
<td>2.6 ± 0.7</td>
<td>2.6 ± 0.7</td>
<td>5.2 ± 0.7</td>
<td>5.2 ± 0.7</td>
</tr>
<tr>
<td>cpG23G2</td>
<td>G23/S22</td>
<td>++</td>
<td>2.6 ± 0.8</td>
<td>2.6 ± 0.8</td>
<td>5.2 ± 0.8</td>
<td>5.2 ± 0.8</td>
</tr>
<tr>
<td>cpS2G1</td>
<td>S2/A1-S</td>
<td>++</td>
<td>1.1 ± 0.0</td>
<td>1.1 ± 0.0</td>
<td>2.2 ± 0.0</td>
<td>2.2 ± 0.0</td>
</tr>
<tr>
<td>cpT3G1</td>
<td>T3/S2-TN</td>
<td>++</td>
<td>1.2 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>2.4 ± 0.1</td>
<td>2.4 ± 0.1</td>
</tr>
<tr>
<td>cpN163G2</td>
<td>T10/T1-N</td>
<td>++</td>
<td>1.4 ± 0.2</td>
<td>1.4 ± 0.2</td>
<td>2.8 ± 0.2</td>
<td>2.8 ± 0.2</td>
</tr>
<tr>
<td>cpG139G2</td>
<td>G13/T10-N</td>
<td>++</td>
<td>1.6 ± 0.3</td>
<td>1.6 ± 0.3</td>
<td>3.2 ± 0.3</td>
<td>3.2 ± 0.3</td>
</tr>
<tr>
<td>cpA180G2</td>
<td>A18/T10-N</td>
<td>+</td>
<td>1.7 ± 0.4</td>
<td>1.7 ± 0.4</td>
<td>3.4 ± 0.4</td>
<td>3.4 ± 0.4</td>
</tr>
<tr>
<td>cpG21G2</td>
<td>G21/N17-VTN</td>
<td>++</td>
<td>1.8 ± 0.5</td>
<td>1.8 ± 0.5</td>
<td>3.6 ± 0.5</td>
<td>3.6 ± 0.5</td>
</tr>
<tr>
<td>cpG23G2</td>
<td>G23/S22</td>
<td>++</td>
<td>1.9 ± 0.6</td>
<td>1.9 ± 0.6</td>
<td>3.8 ± 0.6</td>
<td>3.8 ± 0.6</td>
</tr>
</tbody>
</table>

The enzyme variants listed are ΔArg122 and T123A. C-Terminal amino acid extensions are listed. Small variations in chain length of individual permutants are caused by frame shifts and staggered ends upon DNAse I digestion. Complete sequences are provided in Supporting Information Table S3.
also employed to examine the structural and dynamic properties
polypeptide backbone of cpWT and cpN35 G2
C-terminus of cpA123G1 , located in the cleaved thumb of
residues (...Asp119-Gly120-Asp121) of the permutant and quite
electron density not observable for the final three C-terminal
intact thumb of wild-type Bcx (Figure 3, right). By contrast,
the structure of the latter revealed that perturbations due to the
chemical shift differences between cpWT and wild-type Bcx onto
structures and dynamic properties were then obtained after
same well-folded tertiary structure. More detailed analyses of the
structures and dynamic properties were then obtained after
assignment of the signals of1 H, 13 C, and 15 N nuclei in the
polypeptide backbone of cpWT and cpN35 G2 , and the 1 H and
15 N nuclei in cpY94 G2 , by standard heteronuclear approaches.

Chemical shift perturbations are an exquisitely sensitive in-
dicator of structural perturbations that occur in a protein due to
mutation or ligand binding. Mapping of the 1 H and 15 N
chemical shift differences between cpWT and wild-type Bcx onto
the structure of the latter revealed that perturbations due to the
Arg122 deletion and T123A mutation are localized to the thumb
region of the enzyme (Supporting Information Figure S1). The
thumb is known to exhibit modestly enhanced flexibility relative to
the well-ordered core of the protein (9, 61) and thus appears
able to accommodate these changes without compromising
activity. Similarly, differences in the corresponding 1 H and
15 N chemical shifts of cpN35 G2 versus cpWT arise for residues at
the new and old termini of the two proteins. Again, this is
indicative of only localized structural changes due to the mutation/
deletion and the permutation.

The main chain 1 H and 13 C chemical shifts of a protein are also
a sensitive indicator of its secondary structure. Based upon the
“secondary structure propensity” (SSP) algorithm (62), cpN35 G2
retains essentially the same β-strand and α-helix conformation,
including within the proximity of the old and new termini, as its
wild-type parent (Supporting Information Figure S2). However,
it is noteworthy that signals from only one of the two linker
glycine amides could be identified in the 1 H–15 N HSQC
spectrum of cpN35 G2 . Similarly, signals from the catalytic general
acid/base Glu172 as well as Gly173, Tyr174, and Gln175 were not
observed, presumably due to conformational exchange broad-
ing (i.e., motions on a millisecond to microsecond time scale
that cause chemical shift changes). These residues are structurally
adjacent to the new terminus at Asn35 (i.e., the side chains of
Asn35 and Glu172 are hydrogen bonded in the wild-
type protein), suggestive of dynamic perturbations due to the
permutation.

The backbone dynamics of cpN35 G2 were investigated by 15 N
T1 , T2 , and heteronuclear NOE relaxation measurements (Figure 5).
Fitting of these data by the Lipari–Szabo model-free formalism
yielded a global correlation time of 9.8 ns for the isotropic
tumbling of the permutant. This value closely matches that
reported for wild-type Bcx (9), verifying that cpN35 G2 is also
monomeric under the conditions used for these NMR measure-
ments. The local backbone motions of cpN35 G2 are reflected in
the residue-specific model-free order parameter S2 , which
decreases from 1 to 0 with increasing mobility of the 1 H–15 N bond
vector on the nanosecond to picosecond time scale. As with wild-
type Bcx (9), cpN35 G2 is a remarkably well ordered protein with
little variation in S2 across its sequence. However, Thr33 and

In wild-type Bcx, the positively charged ε-amino of Ala1 and
and negatively charged α-carboxyl of Trp185 are separated by ~2.7 Å
and form a salt bridge to one another (Figure 3, left). In
cpA123 G1 , these residues are covalently linked via a single glycine
residue that is readily accommodated with only small localized
perturbations (~2 Å). However, differences in conformation
between the linker residues in the three monomeric copies of the
permutant within the crystal lattice suggest that this region is
relatively mobile.

The new termini of cpA123 G1 are located within the “thumb”
of Bcx, which is an exposed β-hairpin that lies over the “palm”
active site of the enzyme. The new N-terminal residues of
cpA123 G1 superimpose closely upon the corresponding residues
(Thr/La123-Thr124-Phe125... by wild-type numbering) in the
intact thumb of wild-type Bcx (Figure 3, right). By contrast,
electron density not observable for the final three C-terminal
residues (...Asp119-Gly120-Asp121) of the permutant and quite
different conformations are seen for the penultimate residues
in the three monomer subunits. Together, this indicates that the new
C-terminus of cpA123 G1 , located in the cleaved thumb of the
circularly permuted protein, is flexible.

NMR Spectroscopic Analyses. NMR spectroscopy was also employed to examine the structural and dynamic properties
of the Bcx permutants. The 1 H–15 N HSQC spectra of cpWT,

![Image](https://via.placeholder.com/150)

FIGURE 3: X-ray crystallographic structure of cpA123 G1 . The three chains in the asymmetric unit of the cyclic permutant (cyan, yellow, magenta)
superimpose upon one another (Figure 3, left). In

![Image](https://via.placeholder.com/150)
Gly34 at the new C-terminus of cpN35\(^{G2}\) do show significantly reduced \(S^2\) values indicative of enhanced conformational mobility relative to the remainder of the protein. In contrast, the new N-terminus is relatively rigid. In addition, residues at the linked termini, including the first glycine, are well ordered with only Ala1 showing modestly reduced \(S^2\) values.

DISCUSSION

In this study, we have generated and characterized a library of designed and randomly generated circular permutants of Bcx. The observation that variants of this xylanase can be created with new N- and C-termini within exposed loops is not in itself surprising since other proteins with a jellyroll fold have been circularly permuted (16, 31, 32). What is, however, of great interest is the fact that there are so many sites around the protein structure at which the polypeptide chain can start and still yield an active enzyme. This behavior is presumably a reflection of the stability of Bcx and a very promising way of providing greater diversity for future engineering and directed evolution efforts. It also provides a very valuable library of “start points” for the semisynthetic incorporation of unnatural amino acids to probe further the enzymatic mechanism of this model GH family 11 glycoside hydrolase.

Overall Features. Inspection of Figures 1 and 2 reveals that, as would be expected, a large number of the new start sites in the Bcx circular permutants are indeed located in exposed loops. Examples include cpG23\(^{G2}\) in loop L2–3, cpD119\(^{G2}\) in L9–10 (the “thumb”), cpG139\(^{G2}\) in L10–11, and cpS162\(^{G2}\) in L11–12. Due to the cloning protocol, the generated permutants also frequently incorporated deletions of wild-type residues or acquired non-native residues at their new termini. As a notable example, in cpA18\(^{G2}\) residues 11–17, which in wild-type Bcx form loop L1–2 and part of strand \(\beta2\) on the outer edge of \(\beta\)-sheet \(B\), were absent.

Surprisingly, numerous permutants involved cleavage of \(\beta\)-strands that were otherwise present in the wild-type structure (Table 2 and Figures 1 and 2). Even more remarkably, several of the resulting new termini were located within the interior and not on the outer edges of the two large \(\beta\)-sheets in Bcx. For example, cpS27\(^{G2}\) both cleaved strand \(\beta3\) within sheet B and introduced eight new residues. Although these appended C-terminal amino acids are likely disordered, some could be involved in unexpected

Figure 4: \(^{1}H-^{15}N\) HSQC spectra of (top) cpY94\(^{G2}\), (middle) cpN35\(^{G2}\), and (bottom) cpWT confirm that all three proteins are well folded with similar structures. Signals from selected residues are identified using wild-type numbering.

Figure 5: The backbone dynamics of cpN35\(^{G2}\) were characterized by amide \(^{15}N\) \(T_1\), \(T_2\), and \(^{1}H\left(^{15}N\right)\)-NOE measurements, along with fit Lipari–Szabo model-free order parameters \(S^2\). The NOE and \(S^2\) values decrease and \(T_2\) values increase with increasing mobility of the \(^{1}H^{15}N\) bond vector on the nanosecond to picosecond time scale. Only data for residues near the old and new termini are shown as the remainder of the protein is highly ordered with similar relaxation behavior to that reported previously for the wild-type protein (9). The first linker glycine (G1) is in cyan. Missing data points correspond to proline or residues with unassigned, overlapping, or weak NMR signals.
non-native interactions. Further X-ray crystallographic or NMR spectroscopic studies would be required to resolve such structural questions. Additional permutants of interest include cpN181G2, with three residues deleted in strand β13 within sheet B, and cpV98G2, lacking strand β8 on the edge of sheet A. Presumably the hydrogen-bonding interactions between the remaining strands of the β-sheet are sufficient to correctly localize the clipped strand.

The most notable regions in which active permutants are not found are the single α-helix of Bcx and β-strand 9, which forms part of the active site platform. This may simply be a result of limited sample size or could reflect differences in the local interactions of residues within this helix versus those in loops and β-strands.

Finally, it is interesting that the most active of the permutants tended to be located at the ends of β-strands or in loop regions near the “knuckles” of Bcx (Figure 2). The resilience of this region may reflect a need to vary local structure to optimize binding and catalysis.

Biophysical Characterization. Considerable structural insights into the consequences of relocation of the N- and C-termini were obtained by CD and NMR spectroscopy and X-ray crystallography. These studies showed that, at least for cpN35G2, cpY94G2, and cpA123G1, the secondary and tertiary structures were essentially identical to that of the wild-type parent. Therefore, the ∼10 °C lower Tm values of these permutants likely result from localized destabilizing interactions around the new N- and C-termini or at the site of the newly fused original termini. Interestingly, the trapping of these permutants as their covalent 2-fluoroglycosyl-enzyme intermediates resulted in substantial stabilization of their structures, often to a greater degree than was seen for the wild-type enzyme. Indeed, in some cases, the additional stabilization afforded was sufficient that the trapped permutants unfolded at essentially the same temperature as the trapped cpWT parent.

In wild-type Bcx, the native N- and C-terminal residues are well ordered, interacting directly via a main chain salt bridge (9). However, in the X-ray crystal structure of cpA123G1, the single glycine linker and these adjacent “old” terminal residues adopted multiple conformations, indicative of local flexibility. Similarly, NMR relaxation studies revealed that the second of the two glycines in the linker of cpN35G2 is dynamic, undergoing conformational exchange on a time scale (millisecond to microsecond) leading to the loss of a detectable signal. The first glycine appeared well ordered, at least in the faster nanosecond to picosecond regime. The conformational plasticity of the fused termini likely leads to the similar stability and activity measured for the three cpA123 permutants with linkers ranging from zero to two glycines.

The newly introduced termini in the characterized permutants also appeared to be accommodated with only localized structural and dynamic perturbations. In the crystal structure of cpA123G1, the opened “thumb” adopted a wild-type-like position, albeit with six exposed residues at the new C-terminus of this variant adopting multiple conformations or being unobservable due to disorder. A similar conclusion was reached through NMR relaxation studies of cpN35G2. In particular, only Thr33 and Gly34 at the new C-terminus of this permutant exhibited reduced order parameters indicative of fast time scale motions. However, the absence of detectable NMR signals from active site residues that are structurally adjacent to position 35 (including the catalytic Glu172) is suggestive of localized conformational exchange. Overall, however, any such structural and dynamic perturbations are relatively small and localized. This may result from the uniformly high degree of conformational stability exhibited throughout the entire backbone of the wild-type protein (9).

Active Site Permutants. Intriguingly, several of the randomly generated active permutants placed new start sites within the active site of Bcx. Of particular interest is cpE76G2, which has the nucleophile Glu78 as its new N-terminus. Unfortunately, this permutant exhibited only low activity in qualitative tests and proved to be unstable and thus was not examined in detail. However, it is in many ways remarkable that it was active at all, given the necessity of precise localization of the catalytic nucleophile and the need to shield it from solvent to avoid esterolytic cleavage of the glycosyl-enzyme intermediate.

The permutant with the greatest activity, some 4-fold higher than the wild type, is cpN35G2 with Asn35 at its N-terminus. This is a particularly interesting residue, since it forms hydrogen bonds with the general acid/base Glu172 and is thought to play a role in controlling the orientation and ionization state of the acid/base catalyst (10). Indeed, mutation of Asn35 in Bcx into an aspartic acid shifts the pH optimum from 5.7 to 4.6 with a 20% increase in maximal activity. An equivalent mutation is seen in naturally occurring “low pH” xylanases. Detailed site-specific pKα measurements of 13C NMR revealed that this pH behavior arose from a “reverse protonation” mechanism, with a particularly strong hydrogen bond between the two residues forming in the covalent glycosyl-enzyme intermediate and contributing substantially to catalysis. In that regard, it was interesting to find that only the new C-terminus of cpN35G2 was significantly disorder as measured by S2 values, while the new N-terminus appears to be stably held, consistent with the high activity of this permutant. Nonetheless, an indication of the changed environment is provided by the fact that signals from the acid/base Glu172 were not observed, presumably due to conformational exchange broadening arising from a lower level of ordering. Indeed, it was not just Glu172 that was unobservable, but a large segment of loop from Glu172 to Gln175 and including Tyr174, itself the “start site” of an active permutant with high activity.

The most striking randomly generated permutant is cpQ127G2, in which the entire thumb between Tyr108 and Gln127 is absent. The β-hairpin thumb loop helps to form the active site cleft of Bcx, with Arg112 and Pro116 hydrogen bonding to the substrate in the −1 subsite. Furthermore, Gln127 hydrogen bonds to the nucleophile Glu78. Qualitatively, cpQ127G2 showed low levels of expression and significantly reduced activity but nonetheless was active, both in the original Congo Red assay and with an aryl xylanobioside substrate (Table 2). Deletion of nine thumb residues (corresponding to Tyr111 to Asp119 of Bcx) from the GH family 11 Thermobacillus xylanilyticus xylanase was also reported to lead to a folded enzyme with substantially impaired, albeit measurable, activity toward xylan (60). Unfortunately, efforts to express and purify cpQ127G2 in sufficient amounts for more quantitative kinetic, structural, thermodynamic measurements of this surprisingly active thumb-severed permutant were not successful.

Perspective. The ability to generate a large number of active, circularly permutated variants of Bcx is a testament to its inherent stability and perhaps to its β-jellyroll fold. Permutation sites are most commonly located at exterior loops, yet somewhat surprisingly are also found within β-sheet regions. Presumably there are
sufficient hydrogen-bonding interactions surrounding these “cleavage sites” to stabilize the new termini. Structural studies, both by X-ray crystallography and by NMR spectroscopy, confirmed the integrity of the core and the occurrence of only localized perturbations in these native-like permutants.

These results open up several new directions of study. For example, it would be interesting to carry out comparative directed evolution studies on some of the permutants of Bex that start at Asn35 and Tyr174, both to see if activities can be evolved more readily than is the case with the wild-type enzyme and to see if variants of higher stability can be identified (62, 64). Likewise, it would be particularly interesting to carry out directed evolution on permutants such as cpE78G2 and cpQ127G2 to try to improve their stabilities such that they could then be expressed, purified, and studied in detail.

This library also provides excellent potential starting points for simplified intein-based approaches to chemobiological syntheses of variants in which key catalytic residues have been substituted with labeled or modified amino acids. Candidate permutants for such studies to substitute the catalytic nucleophile E78 include with labeled or modified amino acids. Candidate permutants for simplified intein-based approaches to chemobiological syntheses and studied in detail.

REFERENCES

