Sugar Ring Distortion in the Glycosyl-Enzyme Intermediate of a Family G/11 Xylanase†,‡

Gary Sidhu§‖, Stephen G. Withers,§‖ Nham T. Nguyen,‖ Lawrence P. McIntosh,‖‖ Lothar Ziser,⊥⊥⊥,⊥⊥⊥⊥ and Gary D. Brayer*†

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z3, Canada, and Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada

Received December 15, 1998

ABSTRACT: The 1.8 Å resolution structure of the glycosyl-enzyme intermediate formed on the retaining \(\beta \)-1,4-xylanase from Bacillus circulans has been determined using X-ray crystallographic techniques. The 2-fluoro-xylose residue bound in the \(-1\) subsite adopts a \(2'B \) (boat) conformation, allowing atoms \(C5, O5, C1, \) and \(C2 \) of the sugar to achieve coplanarity as required at the oxocarbenium ion-like transition states of the double-displacement catalytic mechanism. Comparison of this structure to that of a mutant of this same enzyme noncovalently complexed with xylotetraose [Wakarchuk et al. (1994) Protein Sci. 3, 467–475] reveals a number of differences beyond the distortion of the sugar moiety. Most notably, a bifurcated hydrogen bond interaction is formed in the glycosyl-enzyme intermediate involving \(H^\circ \) of Tyr69, the endocyclic oxygen (O5) of the xylose residue in the \(-1\) subsite, and O\(^2 \) of the catalytic nucleophile, Glu78. To gain additional understanding of the role of Tyr69 at the active site of this enzyme, we also determined the 1.5 Å resolution structure of the catalytically inactive Tyr69Phe mutant. Interestingly, no significant structural perturbation due to the loss of the phenolic group is observed. These results suggest that the interactions involving the phenolic group of Tyr69, O5 of the proximal saccharide, and Glu78 O\(^2 \) are important for the catalytic mechanism of this enzyme, and it is proposed that, through charge redistribution, these interactions serve to stabilize the oxocarbenium-like ion of the transition state. Studies of the covalent glycosyl-enzyme intermediate of this xylanase also provide insight into specificity, as contacts with C5 of the xylose moiety exclude sugars with hydroxymethyl substituents, and the mechanism of catalysis, including aspects of stereoelectronic theory as applied to glycoside hydrolysis.

The endo-1,4-\(\beta \)-xylanases of family G/11 are enzymes involved in the hydrolysis of nature’s most abundant hemicellulose, xylan (2). These low molecular weight xylanases perform this function with net retention of anomeric configuration and thus employ the double-displacement catalytic mechanism of retaining \(\beta \)-glycosidases (3). In this mechanism, hydrolysis proceeds through a glycosyl-enzyme intermediate that is formed and hydrolyzed via transition states with substantial oxocarbenium ion character (4, 5). Interest in the mechanism of \(\beta \)-1,4-xylanases has been piqued with the realization that these enzymes are excellent targets for protein engineering experiments. Xylanolytic activity is useful in biotechnological applications such as the bleaching of hardwood kraft pulp for paper manufacture and the processing of feed for livestock (6, 7).

A substantial volume of both structural and functional information is now available on the family G/11 xylanases (8). The three-dimensional fold of five of these enzymes has been determined, and the two acidic residues implicated in the double-displacement mechanism have been identified through a combination of sequence analysis, mutational studies, inhibition experiments, and structure determination (9–15). In the case of Bacillus circulans xylanase (BCX\(^{1} \)), NMR experiments involving both the native enzyme and a glycosyl-enzyme intermediate have even allowed for the determination of p\(K_a \) changes that accompany the enzymatic reaction (16). Nevertheless, there is a lack of detailed information regarding the reaction pathway that prevents a thorough understanding of the mechanism of xylanase.

† This work was funded by the Government of Canada’s Network of Centres of Excellence program supported by the Medical Research Council (MRC) and the Natural Sciences and Engineering Research Council (NSERC) through the Protein Engineering Network of Centres of Excellence (PENCE).

‡ Coordinates for the structures described in this work have been deposited in the Brookhaven Protein Data Bank (1) (Accession numbers 1bv and 2bvv).

§ To whom correspondence should be addressed. Tel: 604-822-5216. Fax: 604-822-5227. Email: brayer@laue.biochem.ubc.ca.

‖ Gary Sidhu is a recipient of an NSERC Postgraduate Scholarship.

‖‖ Department of Biochemistry and Molecular Biology.

⊥⊥⊥ Department of Chemistry.

⊥⊥⊥⊥ Present address: GlycoDesign Inc., 480 University Avenue, Toronto, Ontario, Canada M5G 1V2.

1 Abbreviations: BCX, Bacillus circulans xylanase; DNPFXb, 2′,4′-dinitrophenyl 2-deoxy-2-fluoro-\(\beta \)-xylobioside; 2FXb, 2-deoxy-2-fluoro-\(\beta \)-xylobioside; BCX–2FXb, 2-deoxy-2-fluoro-xylobiosyl enzyme intermediate of Bacillus circulans xylanase; BCX–Xb, noncovalent complex of Bacillus circulans xylanase and xylotetraose; Y69F BCX, Bacillus circulans xylanase with Tyr69 substituted by Phe; R112K BCX, Bacillus circulans xylanase with Arg112 substituted by Lys; R112N BCX, Bacillus circulans xylanase with Arg112 substituted by Asn.
catalysis. The structure of a catalytically inactive BCX mutant incubated with xylotetraose has been characterized, but only a xylobiose moiety could be observed at the active site. Structures of epoxylalkyl xylosides covalently attached to the active site residues of xylanase II from Trichoderma reesei are also available, but these include only one xylose residue.

Detailed structural information on a glycosyl-enzyme intermediate would provide valuable insights into the catalytic mechanism of BCX. Such an intermediate can be trapped using the mechanism-based inhibitor (or “slow substrate”) 2,4-dinitrophenyl 2-deoxy-2-fluoro-β-xylobioside (DNPFXb), as has been done in kinetic and spectroscopic studies (Figure 1). The electronnegative fluorine atom at the 2-position of the xylose moiety slows both the formation and the hydrolysis of the intermediate II from Bacillus circulans are also available, but these include only one xylose residue.

![Figure 1: Schematic representation of the formation of the glycosyl-enzyme intermediate species on BCX.](image)

Materials. The mechanism-based inhibitor was synthesized as described previously. Enzyme mutagenesis, expression, and purification were performed using reported protocols.

Crystallization and Soaking. Crystals of both wild type and Y69F BCX were grown at room temperature (21 °C) using the hanging drop vapor diffusion method. The reservoir solution contained 17% (NH₄)₂SO₄, 10 mM NaCl, and 40 mM Tris HCl at pH 7.5. The hanging drop consisted of 5 μL of protein solution (15 mg mL⁻¹) mixed with 5 μL of reservoir solution. Diffraction quality crystals appeared after 1 month. Wild-type BCX crystals were soaked in a 75 μL aliquot of well solution which was combined with 25 μL of 1.5 mM DNPFXb, 100% (NH₄)₂SO₄, 10 mM NaCl, and 40 mM Tris HCl at pH 7.5 for 28 h just prior to data collection.

Structure Determination. Diffraction data were collected on a Rigaku R-AXIS IIC imaging plate area detector system using Cu Kα radiation supplied by a Rigaku RU300 rotating anode generator operating at 50 kV and 100 mA. Each diffraction data frame was exposed for 20 min during which time the crystal was oscillated through 1.2°. Intensity data were then integrated, scaled, and reduced to structure factor amplitudes with the HKL suite of programs. Data collection statistics are provided in Table 1.

Since crystals of both BCX–2FXb and Y69F BCX retained isomorphous unit cells with that of wild-type BCX, the wild-type BCX structural model (with Tyr69 replaced by Phe (Y69F BCX)) was used to phase diffraction data. These starting models were subjected to rigid body, simulated annealing, positional, and individual isotropic thermal factor refinement using X-FLOR and the CCP4 Suite until convergence was realized. At this point, F̂₀ − F, difference electron density maps were calculated and the 2FXb disaccharide and Phe69 residue were built with the program O into the density observed for BCX–
2FXb and Y69F BCX, respectively. The models were then refined further with X-PLOR using the standard protein and carbohydrate topology and parameter libraries. Because the electron density in BCX–2FXb clearly indicated that the conformation of the proximal saccharide was distorted, the dihedral angle restraints on this residue were removed. The conformation of the proximal saccharide was distorted, the electron density in BCX–2FXb and Y69F BCX are shown in light gray. The fluorine atom is labeled. Relative to native BCX, atoms in the polypeptide chain loop (residues 111–125) to the left of the bound inhibitor have shifted away from the active site cleft to accommodate the disaccharide moiety. Figures 2, 4, 5a, and 7 were generated with Bobscript and Raster3D (47, 48).

![Figure 2: The three-dimensional structure of the BCX–2FXb glycosyl-enzyme intermediate.](Image 337x286 to 538x419)

![Figure 3: The average deviations of main chain atoms in the polypeptide chains of BCX–2FXb (thin line) and Y69F BCX (thick line) from those of wild-type BCX (71). The BCX–2FXb and wild-type structures were superimposed by least-squares fitting the positions of main chain atoms in residues 1–110 and 126–185, while the Y69F BCX and wild-type structures were superimposed by fitting all main chain atoms.](Image 538x419 to 536x744)

Table 1: Data Collection Parameters for BCX–2FXb and Y69F BCX

<table>
<thead>
<tr>
<th>parameters</th>
<th>BCX–2FXb</th>
<th>Y69F BCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>space group</td>
<td>P2₁(2₁)</td>
<td>P2₁(2₁)</td>
</tr>
<tr>
<td>cell dimensions (Å)</td>
<td>43.87</td>
<td>44.00</td>
</tr>
<tr>
<td>a</td>
<td>52.79</td>
<td>52.75</td>
</tr>
<tr>
<td>b</td>
<td>78.09</td>
<td>78.49</td>
</tr>
<tr>
<td>c</td>
<td>137937</td>
<td>128221</td>
</tr>
<tr>
<td>no. of measurements</td>
<td>17727</td>
<td>50126</td>
</tr>
<tr>
<td>mean R[F]</td>
<td>13.6 (4.9)</td>
<td>16.2 (3.6)</td>
</tr>
<tr>
<td>merging R-factor (%)*</td>
<td>7.3 (30.3)</td>
<td>6.4 (19.9)</td>
</tr>
<tr>
<td>resolution range (Å)</td>
<td>∞–1.8</td>
<td>∞–1.5</td>
</tr>
</tbody>
</table>

* Values in parentheses are for the last resolution shell (1.86–1.80 Å for BCX–2FXb and 1.55–1.50 Å for Y69F BCX). $R_{merge} = \frac{\sum_i |I_i - \overline{I}_j|}{\sum_i I_i}$

Table 2: Refinement Statistics for BCX–2FXb and Y69F BCX

<table>
<thead>
<tr>
<th>parameters</th>
<th>BCX–2FXb</th>
<th>Y69F BCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of reflections</td>
<td>17492</td>
<td>27832</td>
</tr>
<tr>
<td>resolution range (Å)</td>
<td>10–1.8</td>
<td>10–1.5</td>
</tr>
<tr>
<td>completeness within range (%)</td>
<td>99.0</td>
<td>92.7</td>
</tr>
<tr>
<td>no. of protein atoms</td>
<td>1427</td>
<td>1426</td>
</tr>
<tr>
<td>no. of ligand atoms</td>
<td>18</td>
<td>148</td>
</tr>
<tr>
<td>no. of solvent atoms</td>
<td>117</td>
<td>148</td>
</tr>
<tr>
<td>average thermal factors (Å²)</td>
<td>14.4</td>
<td>12.5</td>
</tr>
<tr>
<td>protein atoms</td>
<td>17.6</td>
<td>34.7</td>
</tr>
<tr>
<td>ligand atoms</td>
<td>34.7</td>
<td>34.7</td>
</tr>
<tr>
<td>solvent atoms</td>
<td>1.282</td>
<td>1.555</td>
</tr>
<tr>
<td>final refinement R-factor (%)*</td>
<td>18.9</td>
<td>18.8</td>
</tr>
</tbody>
</table>

* R-factor = $\frac{\sum_{i,j} |F_{o,i} - F_{c,j}|}{\sum_{i} F_{o,i}}$

RESULTS AND DISCUSSION

Conformation of the Covalently Bonded Disaccharide and the Neighboring Active Site Residues. The structure of the BCX–2FXb glycosyl-enzyme intermediate was determined to a resolution of 1.8 Å (Table 1, Figure 2). The final refined model exhibits excellent stereochemistry (Table 2). The bound disaccharide atoms refine well with an average thermal factor of 17.6 Å², comparable to the value of 14.4 Å² for all protein atoms. Differences observed in the BCX–2FXb structure relative to the free enzyme as determined by Campbell et al. (71) are primarily restricted to the flexible loop region, composed of residues 111–125, at the entrance of the active site (Figure 3). Residues in this loop shift up to 1 Å, leading to a widening of the active site cleft. A small change in the position of Gly61 is also observed. The electron density for this region suggests the presence of two conformations, with that included in the final model being best defined for BCX–2FXb.

The final refined enzyme-intermediate structure shows the 2-deoxy-2-fluoro-xylobiose (2FXb) ligand covalently bonded to the nucleophile, Glu78, via an α-anomeric linkage with
the C1 atom of the proximal saccharide syn to the newly formed ester group (Figure 4). The proximal saccharide occupies the \(-1\) subsite of BCX, and the new bond between the C1 atom and the O\(^2\) atom of Glu78 is 1.45 Å in length. The observation of the covalent glycosyl-enzyme intermediate confirms the double-displacement mechanism shown in Figure 1.

The xylose residue covalently bonded to Glu78 is heavily distorted from the conventional \(4C_1\) (chair) conformation and adopts instead a \(2,5B\) (boat) conformation (Figure 4) (31). The \(2,5B\) conformation of the proximal saccharide allows its C5, O5, C1, and C2 atoms to achieve a nearly planar geometry (0.05 Å rms deviation from planarity versus 0.22 Å rms deviation for the same atoms in the distal saccharide). These results mark the first crystallographic observation of such significant distortion in a glycosyl-enzyme complex. The distal xylose residue in the \(-2\) subsite maintains a \(2,5B\) conformation and makes van der Waals contacts with the main chain atoms of Ser117 and a stacking interaction with the side chain atoms of Trp9 in a fashion similar to that observed in the noncovalent BCX–xylobiose (BCX–Xb) complex structure (Figure 5) (12). Stacking interactions of this type have been observed in other carbohydrate–protein complexes (32).

The planarity observed for the C5, O5, C1, and C2 atoms of the proximal saccharide in the \(2,5B\) conformation is of particular interest. As noted earlier, both steps of the reaction catalyzed by BCX proceed through transition states with substantial oxocarbenium ion-like character in which a partial double bond develops between O5 and C1 (33). This requires C5, O5, C1, and C2 to approach coplanarity at the transition state. Since such planarity is realized at the glycosyl-enzyme intermediate, the formation and hydrolysis of this species should be considerably facilitated.

Although the rearrangements involved in generating a \(2,5B\) conformation from a \(4C_1\) may appear considerable, they can occur with little perturbation of the relative positions of most atoms of the proximal saccharide. If the rearrangement proceeds via a \(4C_1 \rightarrow 2H_3 \rightarrow S_0 \rightarrow 2B\) itinerary (34), the relative movement is confined mostly to atoms C5 and O5. In this case, the dihedral angle defined by atoms C1, C2, C3, and C4 is not required to undergo much change (this angle is observed to be 48° in the proximal saccharide and 57° in the distal saccharide). Note that the C5 and O5 atoms of xylose are not encumbered by the functional groups found on atoms C1, C2, C3, and C4 and thus are able to experience the movement prescribed by the aforementioned rotational itinerary without a large energetic cost.

The acid/base catalyst, Glu172, occupies a similar position and conformation in the BCX–2FXb complex to that found in the wild-type BCX structure (11). The O\(^2\) atom of Glu172, which both donates and abstracts protons during catalysis, makes a 3.10 Å hydrogen bond to a water molecule situated 3.92 Å away from the C1 atom of the proximal saccharide (Figure 6). This water molecule is also hydrogen bonded to the phenolic oxygen atom of Tyr80 (\(d = 2.74\) Å), as well as to a second solvent molecule (\(d = 3.17\) Å), and is a likely candidate for the nucleophile in the deglycosylation step of the reaction. According to the proposed mechanism and recent p\(K_a\) measurements, the O\(^2\) atom of Glu172 is deprotonated under experimental conditions (p\(K_a = 4.2\)) and thus must accept a hydrogen bond from the nearby water molecule (16, 35). Tyr80, which appears to be donating a hydrogen bond (\(d = 2.83\) Å) to the deprotonated O\(^1\) atom of Glu172, must then also accept a hydrogen bond from the water molecule. In this position, one of the lone pairs of the tetrahedral oxygen atom of this water molecule is directed toward the second solvent molecule while the other lone pair points in the general direction of the proximal saccharide. This placement is ideal for an attack on the C1 atom of the proximal saccharide residue during the deglycosylation reaction (Figure 6).

Comparison of BCX–2FXb, BCX–Xb, and Y69F BCX.

It is instructive to compare the enzyme–ligand interactions observed in the BCX–2FXb glycosyl-enzyme intermediate with those of the BCX–Xb noncovalent complex for which the xylobiose moiety is also bound in the \(-1\) and \(-2\) subsites. Note that the crystals for the noncovalent complex were soaked with xylotetraose, yet only two xylose residues were observed (12). Both xylose residues in the BCX–Xb complex maintain \(4C_1\) conformations, thus placing the nucleophilic oxygen atom of Glu78 3.35 Å from the anomeric carbon of the proximal saccharide (Figure 4c). The requirement to shorten this distance to the length of a glycosidic bond must be an important driving force for the \(4C_1 \rightarrow 2,5B\) conformational rearrangement of the proximal xylose residue.

When comparing the BCX–2FXb and BCX–Xb structures, interactions with Tyr69 are of particular interest (Table 3). In the noncovalent complex, this residue donates a strong hydrogen bond (\(d = 2.60\) Å) to the nucleophilic oxygen atom (O\(^2\)) of Glu78 and accepts a hydrogen bond from the 2-position OH of the distal xylose moiety. In contrast, in the covalent intermediate, the hydrogen bond donated to the O\(^2\) atom of Glu78 is weaker (\(d = 2.99\) Å), consistent with the ether character of its partner. Furthermore, a new interaction for the phenolic oxygen of Tyr69 is formed in BCX–2FXb with the endocyclic oxygen (O5) of the proximal xylose moiety (Figures 5 and 6). The nature of this interaction is intriguing since the hydroxyl group of Tyr69 is very important for catalysis, as evident by the fact that the Y69F variant of BCX exhibits no detectable enzyme activity (M. D. Joshi, personal communication) (12). A similar interaction is also observed in the 2-fluoroglucosyl-enzyme complex of the Family 1 \(\beta\)-glucosidase from \textit{Agrobacterium sp.} (Tyr298) has 2000-fold lower activity than the wild-type enzyme, pointing to an important role (36).

To further understand the catalytic function of Tyr69, we determined the structure of the Y69F variant of BCX to 1.5 Å resolution (Tables 1 and 2). This substitution at position 69 has little effect on the overall three-dimensional fold of BCX (Figure 3). The rms deviation for main chain atoms is 0.09 Å and for all atoms is 0.26 Å relative to the wild-type enzyme. This substitution at position 69 has little effect on the overall three-dimensional fold of BCX. The Y69F variant of BCX would alter the position of the nucleophile carboxylate and thereby disrupt catalysis. It is
Figure 4: Stereo diagrams depicting the conformation of the 2FXb disaccharide of the intermediate. (a) The disaccharide ligand superimposed on an $F_o - F_c$ difference electron density map calculated before the inclusion of the ligand atoms in the refinement model and with Glu78 omitted from F_c. This map is contoured at the 2σ level. (b) An alternative orientation showing Glu78 and the proximal residue of the disaccharide which adopts a 2β conformation. The distal residue maintains a 4α conformation. Atom shading for (a) and (b) follows the conventions of Figure 2. (c) Stereo diagram showing the conformations of the ligands for both the BCX−2FXb and the BCX−Xb complex structures. Coordinates were superimposed by least-squares fitting the main chain atoms of residues 1−110 and 126−185. The carbon atoms belonging to the BCX−Xb noncovalent structure are depicted in dark gray, while those belonging to the BCX−2FXb glycosyl-enzyme intermediate are depicted in light gray. Heteroatoms are shown in black, and the fluorine atom is labeled.
seen in the structure of Y69F BCX, however, that the positions of the side chains of both Glu78 and Trp71, which is also hydrogen bonded to Tyr69 in the wild-type enzyme, remain essentially unperturbed (Figure 7). Therefore, the precise placement of Glu78 must be dictated by other interactions, such as those with the nearby Gln127, and the
bonds formed with Tyr69. H in this latter is, in fact, quite possible. Both of the potential hydrogen bonding geometry about Tyr69 suggests that the bifurcated hydrogen bond (proton is able to alternately occupy two sites or form a also donate to O5 of the proximal xylose residue unless its requirement of Tyr69 for catalysis must be manifest in some other fashion.

Since, in the BCX–2FXb structure, the hydroxyl group of Tyr69 donates a hydrogen bond to Oh of Glu78, it cannot also donate to O5 of the proximal xylose residue unless its proton is able to alternately occupy two sites or form a bifurcated hydrogen bond (37). A detailed analysis of the hydrogen-bonding geometry about Tyr69 suggests that the latter is, in fact, quite possible. Both of the potential hydrogen bonds formed with Tyr69 Hv have reasonable distances and angles, as presented in Figure 5. The hydrogen bond interaction of Tyr69 with the endocyclic O5 oxygen atom of the proximal saccharide may be required to assist the conformational rearrangement and stabilize the 2,5B boat conformation in the reaction intermediate. The involvement of Tyr69 in such a bifurcated hydrogen bond may also explain its necessity for catalysis. Interestingly, a study of the hydrogen-bonding geometry of Tyr330 in the glycosyl-enzyme intermediate of Sinapis alba myrosinase shows similar interactions of the phenolic hydroxyl group with the O2 atom of the catalytic nucleophile, Glu409, and the endocyclic oxygen of the sugar moiety (22).

Clearly, however, a hydrogen bond to the ring oxygen of the proximal saccharide would be counter-catalytic since it would serve to destabilize the oxocarbenium ion-like transition state. It seems likely, therefore, that as the transition state is approached the hydrogen bond donated by the Tyr69 phenolic group becomes asymmetric, favoring Glu78 O2. Simultaneously, the interaction between Tyr69 O5 and the partially positively charged O5 of the proximal xylose residue becomes a direct oxygen–oxygen contact, unmediated by a proton. A dipolar interaction could then form between the two oxygen atoms, concomitant with improved proton donation from Tyr69 to the partially negatively charged O2 atom of Glu78, and, as such, could stabilize the transition state. This interaction may play an important role in catalysis and provide yet another explanation of the requirement of Tyr69 for enzyme activity.

A second interaction that differs substantially between the BCX–Xb and BCX–2FXb structures is that involving the Glu172 O–distal Xyl O2 (Table 3). The shortening of this distance in BCX–2FXb and BCX–Xb noncovalent complex structures is that involving the O2 of Glu78 and the 2-substituent of the proximal sugar (OH in the noncovalent complex and F in the covalent species). Despite the fact that the interaction between the fluorine and the oxygen in the covalent complex must be destabilizing, the distance between these two atoms is shorter than that seen for the analogous yet stabilizing hydrogen-bonding interaction in the BCX–Xb noncovalent complex (Table 3). The shortening of this distance in BCX–2FXb appears to be a consequence of the formation of the covalent bond at the anomeric center and the C1 → 2B conformational change in the proximal saccharide. Similar interactions have been seen in other 2-fluorosugar glycosyl-enzyme complexes and may be an important component of catalysis with the natural substrate (20–22). The suggestion is that a short, strong hydrogen bond is formed at this position in the glycosyl-enzyme intermediate and that this hydrogen bond is even shorter and stronger at the transition state where it is optimized geometrically and electrostatically. This is consistent with the very strong transition-state interactions.

Table 3: Interactions at the Active Site of BCX–2FXb and BCX–Xb

<table>
<thead>
<tr>
<th>interaction</th>
<th>BCX–2FXb</th>
<th>BCX–Xb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr69 O5–Glu78 O2</td>
<td>2.99</td>
<td>2.60</td>
</tr>
<tr>
<td>Tyr69 O5–distal Xyl O2</td>
<td>2.80</td>
<td>2.88</td>
</tr>
<tr>
<td>Tyr69 O5–proximal Xyl O5</td>
<td>2.95</td>
<td>4.04</td>
</tr>
<tr>
<td>Glu78 O2–proximal Xyl O2 (F2)</td>
<td>2.78</td>
<td>3.00</td>
</tr>
<tr>
<td>Arg112 N–proximal Xyl O2 (F2)</td>
<td>3.17</td>
<td>2.97</td>
</tr>
<tr>
<td>Arg112 N–proximal Xyl O3</td>
<td>3.26</td>
<td>3.15</td>
</tr>
<tr>
<td>Pro116 O–proximal Xyl O3</td>
<td>2.68</td>
<td>2.56</td>
</tr>
<tr>
<td>Tyr166 O–distal Xyl O2</td>
<td>2.97</td>
<td>3.24</td>
</tr>
<tr>
<td>Tyr166 O–distal Xyl O3</td>
<td>2.90</td>
<td>2.82</td>
</tr>
</tbody>
</table>

a Atoms in parentheses reflect substitutions made at the 2-position of the DNPFXb ligand.
Sugar Distortion in a Glycosyl-Enzyme Intermediate

Implications. The observation of such striking conformational distortion for a sugar residue in a glycosyl-enzyme intermediate is unprecedented. Furthermore, the nature of this conformational distortion is matched in interest by its implications for the catalytic mechanism. The distortion to the \(^{2,5}B \) conformation places C5, O5, C1, and C2 in a planar arrangement that would considerably facilitate the formation of oxocarbenium ion character at this center in the transition state. Interestingly, the same \(^{2,5}B \) conformation was proposed previously as the conformation of the \(\alpha \)-glucoside substrate bound to yeast \(\alpha \)-glucosidase and identical arguments were forwarded concerning C5, O5, C1, and C2 (42). It was also pointed out that, in this conformation, there is no lone pair on the ring oxygen that is antiperiplanar to the scissile bond, whereas in the \(^{4}C_1 \) conformation such an arrangement does exist. The first step (glycosylation) for an \(\alpha \)-glycosidase and the second step (deglycosylation) for a \(\beta \)-glycosidase have identical stereochemical outcomes (\(\alpha \rightarrow \beta \)), and thus stereoelectronic theory would apply in an equivalent manner to each. The direct observation of the saccharide bound to BCX in a \(^{2,5}B \) conformation, therefore, provides substantial evidence against the importance of the antiperiplanar lone pair hypothesis of Deslongchamps as applied to glycosidases (43).

Complexes of glycosidases with substrate or with product in which a sugar ring is substantially distorted have been observed previously. The best defined are those in which the substrate is bound across the cleavage site with occupancy of both the \(-1 \) and \(+1 \) subsites, leading to the suggestion that interactions with the \(+1 \) subsite are driving the distortion (23, 44, 45). The degree of distortion in these complexes, however, as well as that seen in a hen egg white lysozyme product complex (46), is not as great as that seen in the present example. Further, it is important to note that, because such interactions do not exist in this case, \(+1 \) site interactions cannot be important in causing distortion for the covalent intermediate.

The van der Waals interactions of the C5 atom of the proximal xylose residue suggest not only that the active site is designed specifically for xylan hydrolysis but also that this atom may have a role in achieving the \(^{2,5}B \) conformation. As this atom makes multiple contacts with the protein and occupies a similar position in both the BCX–Xb and the BCX–2FXb structures, it may provide a “hinge” for the action required to mediate distortion from the \(^{4}C_1 \) to the \(^{2,5}B \) conformation (Figure 4c). Regardless, it is certain that the lack of the hydroxymethyl group at C5 is key to the ability to undergo this distortion, suggesting that the hydrolysis of glucose-based substrates by other \(\beta \)-1,4-glycosidases may follow a different course.

Some of the most important interactions at the active site of BCX appear to be those between the phenolic group of Tyr69 and the endocyclic (O5) oxygen of the proximal sugar ring and O\(^{\text{S2}} \) of Glu78, as well as those between the 2-position of the proximal sugar and O\(^{\text{S1}} \) of Glu78. Notably, the phenolic group of Tyr69, as determined from the structure of Y69F BCX, is not involved in correctly positioning the nucleophile or maintaining active site structural features. Instead, the interactions between Tyr69 and its hydrogen-bonding partners serves to form an extended network which appears to redistribute charge as it is developed at the transition state while at the same time stabilizing the required planar
structure. The structure of the BCX glycosyl-enzyme intermediate with its flattened oxocarbenium-like conformation provides insight into the mechanism of xylan hydrolysis and serves to highlight some of the important sites of interaction in a manner that may be useful for the engineering of xylanases for biotechnological applications.

ACKNOWLEDGMENT

We thank Lloyd Mackenzie for technical assistance and Greg Connelly and Manish Joshi for providing protein and insightful discussion.

REFERENCES

Sidhu et al.